Preconditioning and Partial Differential Equations
نویسنده
چکیده
The purpose of this article is to explain how some apparently simple problems from numerical linear algebra are in fact extremely difficult, so that we cannot hope to solve them effectively in general. However, if we build and analyze algorithms to solve them in special cases of interest for the numerical analysis of partial differential equations, we find that the theory needed to validate these methods is of the same nature as that used for pseudo-differential operators, though the operators considered probably do not enter the framework of pseudo-differential operators. This relationship between distant fields of analysis displays how the interaction between different parts of mathematics, motivated by problems of practical origin, leads to interesting questions and solutions. The article is intended for mathematicians of all backgrounds and is written so that beginning graduate students with a good background in PDE’s and analysis can read it, and hopefully enjoy it also.
منابع مشابه
Solving a Class of Partial Differential Equations by Differential Transforms Method
In this work, we find the differential transforms of the functions $tan$ and $sec$, and then we applied this transform on a class of partial differential equations involving $tan$ and $sec$.
متن کاملSimulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method
In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...
متن کاملOn the Exact Solution for Nonlinear Partial Differential Equations
In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...
متن کاملOn The Simulation of Partial Differential Equations Using the Hybrid of Fourier Transform and Homotopy Perturbation Method
In the present work, a hybrid of Fourier transform and homotopy perturbation method is developed for solving the non-homogeneous partial differential equations with variable coefficients. The Fourier transform is employed with combination of homotopy perturbation method (HPM), the so called Fourier transform homotopy perturbation method (FTHPM) to solve the partial differential equations. The c...
متن کاملPartial Differential Equations applied to Medical Image Segmentation
This paper presents an application of partial differential equations(PDEs) for the segmentation of abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been exte...
متن کاملExact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کامل